Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17079, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273579

RESUMO

Climate change is projected to increase the frequency and severity of droughts, possibly causing sudden and elevated tree mortality. Better understanding and predictions of boreal forest responses to climate change are needed to efficiently adapt forest management. We used tree-ring width chronologies from the Swedish National Forest Inventory, sampled between 2010 and 2018, and a random forest machine-learning algorithm to identify the tree, stand, and site variables that determine drought damage risk, and to predict their future spatial-temporal evolution. The dataset consisted of 16,455 cores of Norway spruce, Scots pine, and birch trees from all over Sweden. The risk of drought damage was calculated as the probability of growth anomaly occurrence caused by past drought events during 1960-2010. We used the block cross-validation method to compute model predictions for drought damage risk under current climate and climate predicted for 2040-2070 under the RCP.2.6, RCP.4.5, and RCP.8.5 emission scenarios. We found local climatic variables to be the most important predictors, although stand competition also affects drought damage risk. Norway spruce is currently the most susceptible species to drought in southern Sweden. This species currently faces high vulnerability in 28% of the country and future increases in spring temperatures would greatly increase this area to almost half of the total area of Sweden. Warmer annual temperatures will also increase the current forested area where birch suffers from drought, especially in northern and central Sweden. In contrast, for Scots pine, drought damage coincided with cold winter and early-spring temperatures. Consequently, the current area with high drought damage risk would decrease in a future warmer climate for Scots pine. We suggest active selection of tree species, promoting the right species mixtures and thinning to reduce tree competition as promising strategies for adapting boreal forests to future droughts.


Assuntos
Picea , Pinus sylvestris , Secas , Mudança Climática , Adaptação Fisiológica , Estações do Ano
2.
PLoS One ; 18(12): e0289835, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38100411

RESUMO

The rotation lengths of intensively managed production forests may be altered to achieve a variety of goals, with correspondingly implications for biodiversity. Here we consider the potential implications of shortened rotation times for biodiversity in planted monocultures of the two most common production tree species in Sweden, Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). To do so we surveyed bird, bryophyte, epiphytic lichen and vascular plant diversity in 80 and 55-year-old stands; stand ages which approximate present-day and potential future rotation lengths in this region respectively. We found clear differences in the species communities of the 55 compared to the 80-year-old stands for both understory species and epiphytes, but not for birds. Nevertheless, bird species richness was still highest in the 80-year-old Norway spruce dominated stands. Dead wood amount was also highest the 80-year-old Norway spruce stands. Highest species richness of epiphytic lichens was found in 80-year-old Scots pine stands. However, 55-year-old Scots pine stands had a higher understory species richness and diversity than the older Scots pine stands, including a larger number of open land species. The 80-year-old forest stands examined may be considered old with respect to production forest rotation lengths in Sweden but are relatively young when comparing stand ages of unmanaged natural forest stands. Nevertheless, our results indicate that shortening the rotation time of Scots pine and Norway spruce, in this part of Sweden from 80 to 55 years, could have important consequences for forest biodiversity. These consequences are primarily inferred from the likely implications from shortened rotations for lichens community composition and diversity in both Norway spruce and Scots pine stands, as well as impacts on understory plant species in Norway spruce stands.


Assuntos
Briófitas , Líquens , Picea , Pinus sylvestris , Traqueófitas , Animais , Suécia , Florestas , Biodiversidade , Árvores , Aves , Ecossistema
3.
Sci Rep ; 10(1): 1904, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024896

RESUMO

Diet quality is an important determinant of animal survival and reproduction, and can be described as the combination of different food items ingested, and their nutritional composition. For large herbivores, human landscape modifications to vegetation can limit such diet-mixing opportunities. Here we use southern Sweden's modified landscapes to assess winter diet mixtures (as an indicator of quality) and food availability as drivers of body mass (BM) variation in wild moose (Alces alces). We identify plant species found in the rumen of 323 moose harvested in Oct-Feb, and link variation in average calf BM among populations to diets and food availability. Our results show that variation in calf BM correlates with variation in diet composition, diversity, and food availability. A varied diet relatively rich in broadleaves was associated with higher calf BM than a less variable diet dominated by conifers. A diet high in shrubs and sugar/starch rich agricultural crops was associated with intermediate BM. The proportion of young production forest (0-15 yrs) in the landscape, an indicator of food availability, significantly accounted for variation in calf BM. Our findings emphasize the importance of not only diet composition and forage quantity, but also variability in the diets of large free-ranging herbivores.


Assuntos
Cervos/fisiologia , Comportamento Alimentar/fisiologia , Herbivoria/fisiologia , Animais , Biodiversidade , Variação Biológica da População/fisiologia , Peso Corporal/fisiologia , Feminino , Florestas , Masculino , Plantas , Estações do Ano , Suécia
4.
Ambio ; 49(5): 1035-1049, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31552644

RESUMO

The choice of tree species used in production forests matters for biodiversity and ecosystem services. In Sweden, damage to young production forests by large browsing herbivores is helping to drive a development where sites traditionally regenerated with Scots pine (Pinus sylvestris) are instead being regenerated with Norway spruce (Picea abies). We provide a condensed synthesis of the available evidence regarding the likely resultant implications for forest biodiversity and ecosystem services from this change in tree species. Apart from some benefits (e.g. reduced stand-level browsing damage), we identified a range of negative outcomes for biodiversity, production, esthetic and recreational values, as well as increased stand vulnerability to storm, frost, and drought damage, and potentially higher risks of pest and pathogen outbreak. Our results are directly relevant to forest owners and policy-makers seeking information regarding the uncertainties, risks, and trade-offs likely to result from changing the tree species in production forests.


Assuntos
Picea , Pinus sylvestris , Biodiversidade , Ecossistema , Florestas , Noruega , Suécia , Árvores
5.
Ambio ; 45 Suppl 2: 124-39, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26744048

RESUMO

Whereas there is evidence that mixed-species approaches to production forestry in general can provide positive outcomes relative to monocultures, it is less clear to what extent multiple benefits can be derived from specific mixed-species alternatives. To provide such insights requires evaluations of an encompassing suite of ecosystem services, biodiversity, and forest management considerations provided by specific mixtures and monocultures within a region. Here, we conduct such an assessment in Sweden by contrasting even-aged Norway spruce (Picea abies)-dominated stands, with mixed-species stands of spruce and birch (Betula pendula or B. pubescens), or spruce and Scots pine (Pinus sylvestris). By synthesizing the available evidence, we identify positive outcomes from mixtures including increased biodiversity, water quality, esthetic and recreational values, as well as reduced stand vulnerability to pest and pathogen damage. However, some uncertainties and risks were projected to increase, highlighting the importance of conducting comprehensive interdisciplinary evaluations when assessing the pros and cons of mixtures.


Assuntos
Conservação dos Recursos Naturais , Agricultura Florestal/métodos , Mudança Climática , Ecossistema , Incêndios , Controle de Pragas , Suécia , Qualidade da Água , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...